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A lattice model with an infinite number of phase transitions 

D Kim and C J Thompson 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 7 June 1976 

Abstmct. A lattice model first proposed by Ginibre and a related model are considered in 
the classical or equivalent neighbour limit. It is found that there exists an infinite number of 
phase transitions in the appropriate field space. 

1. Introduction 

Some time ago J Ginibre (1971, unpublished) proposed a lattice model with Hamilto- 
nian 

N N 

x9=- Ajninj+AJ n ? - H  c ni 
l S i < j < N  i = l  i = l  

where n, '0, 1 , 2 , .  . . , as a model which might have an infinite number of phase 
transitions. Here we investigate the classical or equivalent neighbour version of this 
model with 

J j  = J /N > 0 for all i, j (1.2) 
and A > so that the thermodynamic limit exists. 

A somewhat more tractable version of the model which we will treat first and refer to 
as model I allows the site variables ni to take both positive and negative integral values. 
Ginibre's original model to which we will refer as model I1 is discussed in P 3 and we 
conclude with several conjectures and comments in § 4 .  

In order to investigate the phase diagrams of these models, we found it necessary to 
work in the (T, A, H )  field space (Griffiths and Wheeler 1970) where H is the field 
conjugate to the order parameter 

m(T, A, H) = h i >  (1.3) 
and (. . .) denotes thermal average. It is only in this space that rich critical behaviour of 
the models becomes manifest. For example, in (T, A, H) space the occurrence of an 
infinite number of phase transitions for model I is virtually guaranteed for any 
translationally invariant symmetric interaction Ap This is easily seen by noting that the 
free energy f (p, A, H) in the thermodynamic limit, given by 

satisfies 
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which, for any translationally invariant symmetric Jl,, can be shown by changing 
variables n, to n, - 1 .  Equation (1 .5 )  shows that apart from additive analytic terms, the 
free energy is a periodic function of H so that if there is a phase transition for a certain 
value of H = H,, then there will be an infinite number of phase transitions occurring 
when H =  Hc+k(2hJ-I ; i ( t i )J i j ) ,  k = 0 ,  zt l ,  * 2 , .  . . . 

The free energy of model I1 is of course not strictly periodic but, as we will see, the 
calculation presented in 0 3 indicates rather strongly that whenever model I has an 
infinite number of (or equivalently one) phase transitions then so does model 11. 

We now turn to the equivalent neighbour version of our models. 

2. Model I: ni =0, fl, f2,. . . 
Using the elementary identity 

03 

eA2/2  = (2T) - l /2  e-z2/2 eAz dz 

with 

the partition function for the equivalent neighbour model may be written as 
N N 

e-’%= exp[PJ/2N(f ni)2- /3J/2N f n f - P h J  n f + P H  c nil 
(nd  (na) 1 = 1  r = l  i = l  i = l  

W 

= ( 2 v ) - ’ I 2  I-, 1 exp( -PJ[h + ( 1 / 2 N ) ]  f n f  
In21 1 = 1  

+ [PH+ zJiPJ/N)I f n , )  dz 
r = l  

= ( P J N / ~ T ) ’ / ~  I ( e-’JYz/2 f exp{-PJ[A + ( 1 / 2 N ) ] n 2  
-m n=-m 

+ ( P H + P J Y ) n ) ) N  dY ( 2 . 2 )  

where in the last step we have made the change of variables z = y J ( p J N ) .  Making the 
further change of variables 

PH + PJy = 2bx, b =PJh (2 .3 )  
and applying Laplace’s method to the integral (2 .2 )  we then obtain from ( 1 . 4 )  the 
expression for the limiting free energy per site (cf Thompson 1972): 

- P f ( P , A , H ) =  max [gl(x, b ) - 2 b ( A  - ~ ) ( x - N ) ~ ] + ( A  -$ )pJN2  ( 2 . 4 )  
-m<x<m 

with the reduced field H defined by 

and 
R = H / 2 ( h  -$)J 
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It win be noted in terms of a, equation (1 S )  for model I becomes 

f (P ,A ,m=f (P ,A18+1) - (A  -$ ) J (1+2m (2.7) 

m ( P , A , H + l ) = m ( p , A , a ) + l .  (2.8) 

m ( P , A , a ) = 2 h ( x * ( P , A , I f ) - I f ) + E 7 .  (2.9) 

and for the order parameter (1.3) 

Further, if x * @ ,  A, m is the maximizing x in (2.4), it is easily shown that 

The exponential of the function gl(x, b), which is periodic and even in x, can be 
expressed in terms of a theta function with imaginary argument (see, for example, 
Whittaker and Watson 1965). Using the appropriate Jacobi infinite product represen- 
tation of the theta function we obtain the expression 

a, 

gl(x, b)= -bx2+ [ln(l -e-2"b)+ln(l +e-2(n-t+x)b)+ln(l +e-2(n-t-x)b)]. (2.10) 
n = l  

Numerically, gl(x, 6 )  has a maximum at x = 0 and decreases monotonically as x 
increases until x = i where it reaches a minimum. Consequently, from (2.4), when I? = i 
there are two maximizing values for x*,  corresponding to a jump discontinuity in the 
order parameter m (p, A, m (as a function of m, provided 

(2.11) 

From the periodic properties (2.7) and (2.8) we therefore have an infinite number of 
phase transitions at 

f i = $ * k ,  k = 0 ,  1 , 2 , .  . . (2.12) 

provided 

T <  T c ( A )  (2.13) 

where from (2.3) and (2.1 1) the critical temperature Tc(A) is determined parametrically 
through the equations 

and, from (2.10), 

b m 
2 A - -  z - 1  d2g 1 = b  (coshnb)-'+--l. ( i) 2b dx2 x = 1 / 2  2 

(2.14) 

(2.15) 

Actual values for Tc(h) determined numerically are shown in figure 1. 
Phase diagrams for model I are shown in figures 2(a) and 2(b) for A = 1. For 

different values of A (> $) the overall features remain the same. In figure 2(a), the 
coexistence lines at H =  * ( k  -$), k = 1 , 2 , .  . . are straight lines terminating at the 
critical points c*k. The values of m at these critical points are * ( k  -;) respectively and 
due to the periodic nature of the free energy, the critical behaviour is the same at all 
critical points. Since the model is essentially a mean field model all critical exponents are 
classical, or in other words, the coexistence curves in the m-T plane are parabolic in the 
neighbourhood of the critical points. 
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F i e  1. Numerical values of Tc(A). As A +CO, kT,(A)/J approaches to exponentially. 
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Figure 2. Phase diagrams of model I in (a) T-H plane and in (b )  T-m plane for A = 1. elk, 
k = 1 , 2 ,  . . . , are the critical points whose critical behaviours are all identical. The shaded 
regions in (b )  are the two phase regions. Here kT,( 1)/J = 0.2507. 

3. Model II: ni=O, 1,2,. . . 
For the original Ginibre model we do not have a periodicity property such as (1.5) for 
model I. Nevertheless, in the equivalent neighbour case at least, model I1 also has an 
infinite number of phase transitions. 



A lattice model with an infinite number of phase transitions 2101 

The derivation of the free energy for model I1 parallels that for model I. The final 
expression is the same as (2.4) with g,(x,  6 )  replaced by g2(x, b )  defined by 

CD 

g2(x, b )  = In( 
e-b(n-x)2 

n =O 
(3.1) 

In this case the location of the singularities must be determined numerically. Some 
general features can, however, be seen in some limiting cases. Firstly, if x is large and 
positive 

(3.2) 

Therefore, if f is large, then x *  and m are large and we can expect the behaviour of the 
free energy to be similar to that of model I in this limit. Secondly, when b + CO, that is, if 
either A +CO or T+ 0, g2(x, b )  becomes asymptotically 

g2(x, b )  = g l (x ,  b )  +O(e-b(’+X)2 1. 

x > o  
x <o. g2(x, b )  - [ g l ( x ’  b, 

-bx2 (3.3) 

From this we can deduce that for f > 0 (or m > O),  the thermodynamic behaviour of 
the two models is the same in the low temperature limit for all A, or in the large A limit 
for all T, while for f< 0 (or m < 0), there is no phase transition at all for model I1 in the 
above mentioned limits. Consequently the phase diagrams of model I1 in these limits 
are the same as that of figure 2 for I? > 0 and m > 0 and no phase transitions for 8 < 0 
and m < O .  

Actual shapes of the phase diagrams for model I1 have been determined numeri- 
cally. In figure 3 we show the case for A + CO where the coexistence lines in the T-H 
plane are all straight lines. For finite A they deviate from straight lines and bend 
towards the left, the deviation being greatest for small f and exponentially vanishing as 
fi increases. From a numerical point of view all phase diagrams are essentially the same 
for A 2 1. 

A 

0 1 2 3 
m 

Figure 3. Phase diagrams of model I1 for A = 
kT,(m)/J = 0.25. Within this scale, the figures do not change for all A greater than 1. 

in (a) T-H plane and in ( b )  T-m plane. 
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The differences between the phase diagrams for small H or m compared with those 
for large I? or m become prominent when A approaches i. As a typical case we show the 
situation in figure 4 for A = 0.51. The coexistence line near fi= 2.5 is not strictly 
straight; at the critical point cg the critical field is f i C  = 2.4999929 ... (rather than 2.5). 

1' 

0 1 2 3 
m 

Figure 4. Phase diagrams of model I1 for A = 0.5 1 in ( a )  T-H plane and in ( b )  T-m plane. 
kT,(O.Sl) /J= 0.3765. 

We note also that the coexistence line below the critical point c1 in this case crosses the T 
axis so that in zero field there is a first order phase transition (at kT/J = 0.2004 ...). Also 
the coexistence lines in the T-H plane near the critical points are not parallel to the T 
axis so that the specific heat of model I1 is a strongly diverging quantity, like the 
susceptibility, at each of the critical points (cf Griffiths and Wheeler 1970), in this case 
with classical exponents a = a' = y = 7' = 1 if one approaches a critical point asymptoti- 
cally parallel to its coexistence line and with a = a '= 1 - ( l /S)  = $ otherwise. In 
addition, as A approaches closer to 4 more lines cross the T axis resulting in a 
multiplicity of first order phase transition points in zero field. This is in contrast to 
model I whose free energy is always analytic in zero field. 

4. Discussion 

In this article we have considered two models and shown that in the equivalent 
neighbour case, or classical limit, both have an infinite number of phase transitions, with 
classical critical exponents at all critical points. 

For more realistic short ranged interactions Aj, e.g. nearest neighbour interactions 
only, we expect the qualitative features of the phase diagrams (figures 2, 3 and 4), and 
the fact that there is an infinite number of phase transitions for both models, to remain 
valid, at least for lattice dimensionality greater than, and possibly equal to, two. 
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Furthermore, if in general, we let 
- 1  

f i = H ( 2 A J -  1 A,) = f + k ,  k =0,*1, * 2 , . .  . , (4.1) 
i ( # i )  

the Hamiltonian (1.1) for model I can be rewritten in the form 

where 
1 3 5  

Ul = *2,*2,*g, .  . . . 
It follows that in the limit A + 03 and H +  03 such that fi = 1, the free energy becomes 

(4.3) 

where fi is the free energy of the zero field king model with Hamiltonian 

In other words, in the limit A + 03, the critical point c1 of figure 2 becomes that of the 
Ising model. Hence, if we assume that the critical behaviour of model I falls in the same 
universality class (Griffiths 1970) for all A >f, then we can expect that the critical 
exponents associated with the critical points c* ] ,  c * ~ ,  ... to be all of Ising type. Exactly 
the same observations can be made for model 11. It is to be noted also that when 
expressed in the form (4.2) the anomalous feature of model I, being analytic in zero 
field, disappears and the model resembles more closely a spin model, which may be 
thought of as a discrete infinite spin version of the Ising model. 

Although we have no proofs of our conjectures at this stage, it would seem that it 
should be at  least possible to prove that if an Ising model has phase transition, then the 
corresponding models I or I1 have an infinite number of phase transitions. 
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